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1. Introduction and statement of theorems

For a finite set X, 1X| will denote the number of elements
of X . An incidence structure is an ordered triple (P,L,I)
where P and L are disjoint sets and I € P X L . Elements of
P will be called points or vertices and elements of L 1lines.
A line 2 and a point p are called incident iff (p,L) € I .
We also say in this case that £ contains p or p lieson £.
Two lines £ and m are said to intersect iff they have a common
incident point. With any incidence structure (P,L,I) is associated
its dual incidence structure (L,P,I*) where I* = {(£,p):(p,%) € I}.
If L is a set of subsets of P and (p,L) €I iff p €L, we
will refer to (P,L,I) as (P,L,€) or (P,L) . The dual of
(P,L,€) will be written as (L,P,2) . If each element of L and
P is a set and (p,£) € I iff p s £ , we write (P,L,I) as

(p,L,=) and its duwal as (L,P,2) . For a line £ , P, will denote

2

the set of points incident with line £ . If P, is a finite set, we

L

write k(2) for the cardinality of P Similarly, for a point

.
P Lp denotes the set of lines £ incident with the point p and

we write r(p) for ‘Lpl . An incidence structure is said to be

simple iff for any two distinct lines £ and 2', P, # Py, . Incidence
structures (P,L,I) and (P',L',I') will be called isomorphic iff

there exist bijections o: P+ P' and T: L + L' such that (p,L) €1I

iff (o 2R} €2 i
( (P) ) K @/

An incidence structure =« = (P,L,I) is said to be finite iff tw )

0
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both P and L are finite sets. All incidence structures in this

paper are finite. For a finite incidence structure, we will set

r(x) = min{r(p):p € P} and «k(n) = min{k(2):2 € L}, Let q be a

positive integer. If q = 1 , we define s(n,q) to be equal to
k(r) . If q>2 , we define s(n,q) to be the unique real number
s which satisfies q°- 1 = k(x)(g-1) . If q=1 , we define
d(n,q) to be equal to r(x) + s(x, q)- 1. If q > 2 , we define
d(n,q) to be the unique real number d w'.'ch satisfies qd's("Q) s
= (g-1)r(x). We normally write s(x,q) as 8(x) and d(x,q) as d(x).
The incidence structure = 1is said to be semilinear iff Vp,p',e P ,
P #p' , T at most one line £ incident with both p and p'. Let r and
| k be positive integers. A semilinear incidence structure x is said to be an
(r,k) incidence structure iff for every point p, r(p) = r and every line £,
k(£) = k . Let n be a semilinear incidence structure and £ and
m be two lines. A line n will be called a transversal of £ and
m iff n intersects both £ and m and P NP, #P NP . A
semilinear incidence structure n 1is said to satisfy Pasch's axiom
iff for any pair of intersecting lines my and m, and any pair
of transversals ny and n, of wy and My o, 0y intersects n, .

A subset F &P is called a flat iff Y L €L, |[P,NF | >2 implies

LiS Pt S F . Clearly, any intersection of flats is a flat. For S &P,
the flat <S8 > NF is said to be the flat generated by S . For
F=5

any flat F , rank F is the smallest integer n such that there
exists a set S <P, |S| =n and <§ > F . The rank of the flat

P is called rank ¢ .




A simple graph is a simple incidence structure in which every
line is incident with exactly two points. Points and lines of a
simple graph will usually be called vertices and edges, respectively.
Two vertices p and p' will be called adjacent iff there exists
an edge £ incident with p and p' . Adjacency is a symmetric
relation on the set of vertices of a graph and determines a simple
graph completely. All graphs considered in this paper will be finite
and simple. Let G be a simple graph with vertex set V and edge
set E. Let n be a nonnegative integer. A path of length n from

v =vV)

u to v 1is a sequence (u = Vor Ly Vs dos Vo eee ln, 2

where Zi is an edge incident with via

If the vertices Vgr Vys eee 5 Vv, are all distinct, then the path

and Vi F) i = 1,2,...,!1 .

is said to be simple. If for any two vertices u and v there exists
a path from u to v , then the graph G 1is said to be connected.
In a connected graph G the distance d(u,v) between two vertices
u and v 1is the smallest nonnegative integer n such that a path
of length n from u to v in G exists.

Let = = (P,L,I) be an incidence structure. The adjacency graph
g(r) of = is a graph having vertex set P and two vertices adjacent
iff some line of = contains both. The graph G(n*) of the dual
incidence structure n* will be called the line graph of «x .
Distance between two points p and p' of = will be same as the
distance between them in G(x) . For S <SP and £, m€L , we
will set d(2,5) = min {d(p,p'): p' € S, p incident with £} and
d(2,m) = min{d(2,p): p incident with m} where d(p,p') is the
distance between the vertices p and p' in G(x) . Sometimes the

points of nx will be called vertices.

- m San o e oo et e DRSS e B a el Ll TR




Let q >2 be a prime power and 1 <s <d be integers.
Let V be a d-dimensional vector space over a finite field of
order q . Let wi be the set of i-dimensional subspaces of V ,

1<i<d. Let (W s » €) Dbe the incidence structure whose

g e W
points are (S-1)-dimensional subspaces, lines are S-dimensional
subspaces and incidence is set inclusion. Any incidence structure =
isomorphic to (ws-l' W, €) will be called an (s,q,d) projective
incidence structure (p.i.s.). For q = 1 , also we define an

(s ,1,d)-projective incidence structure. Let Y be a finite set

with 1Y| =d. A subset Y' €Y is called an i-subset of Y iff
'l =1 . let Z; be the set of i-subsets of Y . Any incidence
structure isomorphic to (zs_l, Zgy, ) will be called an (8,1,d) -
projective incidence structure. The incidence structure (wd-s+l’wd-s’ 2)

is dual to (ws_l,ws, @) e vAdse, (2 l’Zd-s’ 2) is dual to

d-sg+
(ZS-I,ZS, c) .
The following classical theorem about finite projective spaces

characterizes (2,q,d)-projective incidence structures for 4 >4 .

Theorem Let n be a finite incidence structure satisfying

(pl) There exists exactly one line joining two distinct points.
(p2) Every line contains at least three points.

(p3) Pasch's axiom.

(p4) Rank of n >k .

Then there exists a prime power q > 2 and an integer d >4 such
that n is a (2,q,d)-projective incidence structure. Conversely,
any (2,q,d)-projective incidence structure with d >4 , q > 2

satisfies (p1) - (p4) .
Extending this classical theorem, we prove a characterization
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of (s,q,d)-projective incidence structures when 3 < s <d-1.

Theorem 1. Let q o 1l be an integer and n be a finite incidence
structure satisfying

(£1) 3 < s(n,q) < d(m,yq) -1

(f2) There exists at most one line joining two distinct points.

(€3) If p is a point and £ 1is a line such that d(p,£) = 1, then
there are exactly (q + 1) 1lines which pass through p and
intersect £ .

(f4+) If p and p' are two distinct points such that d(p,p') =2,
then there are exactly (q + 1) lines £ such that £ passes
through p' and d(p,2) = 1.

(r9) G(x) 1is connected.

Then s = s(x,q) and d = d(x,q) are integers, q = 1 or a prime
power and = is an (8,q,d)- projective incidence structure. Conversely,
for 3<s<d-1, any (s,q,d)-projective incidence structure
satisfies (fl1) -(f5) .
We also show that the axioms (f1) - (f5) are minimal for the purpose
of characterizing (s,q,d)-p.i.s., 3<s <d - 1. For any choice of
3 €{1,2,3,4,51 , there exists incidence structures n' which satisfy the
four axioms other than (fj) and is not an (s,q,d)-p.i.s. with 3 <s <d - 1.
A finite incidence structure n satisfying (f2) - (£5) is called an (s,q,d)-
pseudo projective incidence structure where s(x,q) = s and d(x,q)= d. The axiom

(£5) in the statement of Theorem 1 is not an essential axiom. Let g =

(Pi’Li’Ii) , 1=1,2 be two incidence structures such that Pl n P2 =

L1 n L2 =¢ . We define the direct sum x = Y + %, by
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=P UP, L UL, ,1I) wvhere (p,2) €1 1ff 3 ,1 <1 <2,
1 2 ; s

2
pEP , €L ,and (p,4) €T, .

Theorem 2. Let q > 1 be an integer and n be a finite incidence
structure satisfying the axioms (f1) - (f4) . Then q =1 or a prime
power and rn is isomorphic to the direct sum of one or more projective
incidence structures. Conversely, if q = 1 or a prime power and
3<s<d-1 and r is the direct sum of several (si,q,di)-p.i.s.

where 3 <s. <d, -1, then n satisfies axioms (£1) ~ (£h).

Outline of the Proof. Let n be an (s,q,d)-pseudo projective

incidence stucture. Let m and n be two lines containing a common
point O . A line £ is said to be a transversal of m and n iff

2 intersects both m and n and does not contain O . Let C(m,n)

be the set of lines containing the transversals of m and n and

all lines / which contain O and intersect at leac. one transversal
of m and n . C(m,n) is called the plane generated by m and n.

Let (C be the set of all planes. One of the important steps in the
proof is to show that the incidence structure (1L,C,€) is an (s+l1,q,d)-
pseudo projective incidence structure. One starts with an (s,q,d)-
pseudo p.i.s. and finally obtains an (d-1,q,d)-pseudo p.i.s. which is

then shown to be the dual of a projective space.




2. Preliminary propositions

Lerma 1. Tet q >1 be an integer, n be a finite incidence structure
such that r(p) and k(&) are positive for all points p and line £ .

Tet n satisfy the axioms (f2),(f3) and (£5) and r = r(x), k = k(x) .

Then = s an (r,k)-incidence structure.
Proof: Let x = (P,L,I) . To show that ¥ £ €L , k(2) =k ,

it is sufficient to show that ¥ £' €L, k(£) = k(2') . Let £
and £' be two intersecting lines and z be the common point. We

calculate

b= H(P;P') : (P;L) &1 (P':L') €I, p,p 7'4 z,
d(p,p') = 1}|

For every point p# z of &, d(p,2') = 1. So there are q points

p' of 2' such that d(p,p') =1 and p'# z . Hence, b= (k(2)-1)(q).
By symmetry b= (x(2')-1)(q) . Since q > 1, k(£) = k(2') . Let

£ and 4' be any two lines. Since G (x) is connected, we can

find a sequence zo =% , tl 5 12, sen oy Li = 2' such that zj_l and

zj intersect for j = 1,2,...,i . Since k(zj_l) = k(tj) for
J=1,2, 600 51, it follows that k(L') = k(£) . It is easily
checked that the dual incidence structure =* satisfies (f2) , (f3)

and (f5). Therefore, we get r(p) = r(p') , ¥p , p' € P and hence,

Lemma 2, Let g =1 or a prime power and 3 <s <d-1 be
integers. Then any (s,q,d)-projective incidence structure is an
(s,q,4)-pseudo projective incidence structure.

222251 First we consider the case q a prime power, q >2 .

Let n = (ws-l’ Wy <) bve an (s,q,d)-projective incidence structure
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where 3 <s <d-2 and wi is the set of 1 - dimensional subspaces

of a vector space V  of dimension d over GF(q) , O <1i<4d,
The number of (s-1)-dimensional subspaces contained in an s-dimensional
s s
g =L -1
subspace is %:T and hence, k(x) = %:I and s(x) =s .

Similarly, the number of s-dimensional subspaces containing a given
d-s+l d-s+1

\ : . =1 1
s-1)-dimensional subspace is . Therefore, r(x) =
( )¢ pa &FT » (x) q -
and d(x) = d . The axiom (fl) holds since 3 <s <d-2 . Let p

and p' be two (s-1)-dimensional subspaces and £ be an s-dimensional
subspace such that p, p' € £ . Then £ 1is the subspace spanned by

p and p' . Hence, there exists at most one line joining p and p’
and x is semilinear. Let p and p' be two (s-1)-dimensional
subspaces such that [ul s Uy s eee 5 U 5 VY oy eee vs-i} and
{ul,u2, e s U5 Wy Wy eee "s-i} are respectively bases of p

and p', 0<1i<s-1. Let pJ be the subspace spanned by

{ul, u2, cee ui ’ wl’ Wa, eee wJ F) vj‘f‘l’ cee Vs_i} » j=0,l, vee s-i .,

Then Dy =P and p,_, =p' and p; and P are adjacent in G(x) .

s-1 J+1

Hence, there exists a path joining p and p' in G(x) . This
establishes that G(x) is connected. Let p € Wy, and £ € Wy such
that d(p,2) =1 . Then p ¢ ¢ and there exists an £' € W, such

that ps £4' and £ N L' € ws_ Tt follows that p N £ = u 1is an

1°
(s-2)-dimensional subspace. There are (q + 1) (s-1)-dimensional
subspaces p, , 1 <1i <aq+l such that u< p; < L. lLet ‘i =<pp; >
Then zi » 1 <1 <qg+l are the only lines of nx which contain p and
intersect £ in a point. It follows that = satisfies (f3). Let

9,9 € W _, such that d(p,p') = 2 . This implies that pNp'=v € "3-3'
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Tet Uy, Uy, e, L) be the (s-2)-dimensional subspaces such

that v & u; S P, 1<i<gtl, Let li = < ui,p' 2yl <y Sgrl .

L ‘ ‘”’ LR ] i i
Then 1’ £2 e ; lq+1 are the only lines of n which pass
through p' and have distance 1 from p . Therefore, n satisfies

(f4). This establishes the lemma when q >2 . For q =1 , we take
i = (Zs_l, Zg » Q) where Z; 1is the set of i-element subsets of
a d-setY, 0<1i<d. It is easily checked that n satisfies
the axioms (f1) - (£5).
In the sequel we will assume without loss of generality (wlog) that lines
are subsets of points. We assume that q 1is a fixed positive integer and
¢ and d real mmbers satisfying 3 <s <d-1 and = 1is a pseudo projective

incidence structure and s(n) =s , d(x) =d, r(x) = r , k(x) = k.

Lerma 3. let p and p' be two distinct points of n such

that d(p,p') =2 . Let L, be the set of lines containing p and

at distance 1 from p' and let L2 be the set of lines containing

p' and at distance 1 from p . Then each line of L. intersects each

dl:
line of L2 .

Proof: ILet n € L, and n* = {z €n:d(z,p) =1} . Then |n*|
equals the number of lines of L, which intersect n . By (f3),

In*| = (q + 1) and by (f4), !Lll =q+ 1. Hence, each line of L,
intersects n .

For a pair of lines m and n , T(m,n) denotes the set of
transversals of m and n .

Lemma 4., JLet m and n be two distinct lines of x such that
d(myn) = 1. Then (i), d(p,m) = 1 for exactly (q + 1) points p

of n and (ii), IT(m,n)| < (a +1)% .

pctppts o cvots o e ot <
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Proof: Since d(m,n) = 1 , there exists points x and y

such that x €m , y € n and d(x,y) =1 . Since d(x,n) =1,

I

by (f3) there exists (q + 1) points T =X 5Ty v ove 2%y such

that d(x,yi) =1, y; €n and d(yi, m)y=1,0<i<g. If

1l . Then

possible, let y €n , y # ¥y »0<i<q and d(y,m)
d(x,y) =2 , d(x,n) = d(y,m) =1 and x €m , y €n . By Lenma L,
m and n must intersect whence d(m,n) # 1 . This completes the
proof of (i) and (ii) follows easily.

Let m and n be intersecting lines and x be the point of

intersection. We let

C(myn) = T(m,n) U {h: h€L ,x€h,hNn'"#9¢

for some n' € T(m,n)}

Lemma 5. Pasch's axiom is valid in (P,L).
For any pair of intersecting lines m, and m, , |T(ml,m2)| = (k-1)q .
Proof: Let {x} = my n m, . For each y (2 m o-x,y is
adjacent to q vertices of m, = X . So, q transversals of my and
m, contain y . Therefore, |T(ml,m2)| = (k-1)qg . Let n € T(ml,me) 5

Let a€nfNm,bé€nnN m, 5 S, Dbe the set of (g-1) vertices of

4
m - {x,a} adjacent to b and S, be the set of (q-1) vertices

of m, - {x,b} adjacent to a . Let h € T(ml,m2) such that

{c}=nn mlq‘:Sl. Then b and c¢ are not adjacent. We get d(b,c) = 2,
b€n,d(en) =1, c€h,dlb,h)=1. By Lemak, n and h
intersect. It follows that if h € T(ml,mz) and h and n do not
intersect, then h 1l m, € 5, » Similarly, h N my € S5 « Therefore -
the number of lines of T(ml,mz) not intersecting n is at most

2
(a-1)% = [s,] s, « If q@=1, (a-1)° = 0 . Then all lines of T(m,m,)

intersect n , so Pasch's axiom is valid.

. . R
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let g * 2 . T7 pogsible, let n and h be two non-intersecting

lineg of T(n],mg) . There are at least |T(ml,m2)|-2(q-l)2 = (k-l)q-2(q-l)2
lines of T(nl’hﬁ) which intersect both n and h . Also, m, and

m ‘ntersect both n and h . Hence, the mmber of lines intersecting
both n and h is at least kq - 2q2 + 3q « On the other hand,

since d(n,h) = 1, by Lemma 5 there are at most (q + l)2 lines
intersecting both n and h . This gives us (q + l)2 > kq - 2q2 + 3q .

2 2 : EEonl
Since £>3 ,k>q +q+1>3q and (qg#1)” > 3q2 = 2q2 + 3q « Simplifying

the inequality we get 1 > q which contradicts the assumption.
If 5 1is a set of lines such that any two lines of S intersect
each other, then 5 1is a clique in the line graph of (P,L); we

refer to such a set S as a clique of lines.

Lemme. 6. Let 1, and m, be intersecting lines. Then

o(m,,m,) is a maximal clique of lines.

Proof: We denote T(ml,mg) by T and C(ml,m2) by €.
Let {x]} = m Nr, . T is a clique of lines, and so is C-T since

belongs to each line of C-T . It is sufficient to show
that if h € C-T and n' € T, then h intersects n' . Since h € C-T,
¥ €h and h intersects n for some transversal n of my and

. Ve nay assume (by exchanging m, and m, if necessary) that

N

nfm, # n* N m, . Then h,n' € T(n,ma) e So, h and n' intersect.
lfence C 1is a clique of lines., It is clear from the definition of C
that no proper superset of C is a clique of lines.
We call each C(ml,mz) a plane, and let C be the set of planes.
Corollary 1. Each plane contains gk + 1 lines.

Proof: Let m and n be lines which intersect at x . We show

that |C(m,n)| = @+ 1. Let h € T(myn) . By Lemma 6 every line
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of C(m,n)-T(m,n) intersects h , so C(m,n)-T(m,n) is the set

of q+ 1 lines which contain x and intersect h . |T(m,n)| = (k-1)q.
Lerma 7. Let K be a clique of lines, myn € K (m # n) , and

{x} =m Nn . Then either all lines of K contains x or K € C(m,n).
Proof: Ve assume that some line n' of K does not contain

and show that ¥ < C(myn) . Let h € K. Then h intersects

m,n,and n'. If x €h, then h € T(m,n) . So h € C(myn), Next
suppose x € h . Since h intersects n' , h € C(m,n). Therefore,
K € C(m,n).

Lemma. 8. (i) Each pair of intersecting lines is in a unique
plane., (ii) If the plane C contains at least 1 1line containing
% , then C contains exactly gq + 1 lines containing x . (iii) Each
line is contained in (r-1)/q planes.

Proof: (i) Let m and n be intersecting lines and the plane
C contain m and n. By Lemma 7 C < C(m,n) . But all planes have
the same cardinality, so C = C(m,n) . (ii) Let x€m€C . Let
n€" sothat x $n. Then C = C(myn) . Every line of C which
contains x also intersects n . There are q + 1 lines which contain
x and intersect n . One of these lines is m , and the remaining q
lines are transversals of m and n , so q + 1 lines of C contain
x o (iii) Let m be a line. Choose x € m and let Mo pMigyeee sl
be the lines containing x which are distinct from m . Each plane
which contains m contains exactly q lines among m2,m3,...,mr .
By part (i), each line my is contained in a unigue plane containing
m . Hence exactly (r-1)/q planes contain m .

From Lemma 8 and Corollary 1, the following statement is immediate.
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Corollary 2. (L,2) is a semilinear ((r -c/q , gk + 1) -
incidence structure.

For any plane C we define C = m,
m€ C

Lema 9, lLet m€L and CE€C., If |mNC|>2,then m€cC.

Proof: Let x,y €m N T . Then for some n, and n, (nl,n2 # m)
x € n, €C and y € n, € C . Lines n, and n, intersect since
all lines of C intersect, so C = C(nl,na) . Since m is a

transversal of ny and n, , m enge

Since each pair of intersecting lines is contained in a plane,
and each plane is a clique of lines, two lines contain a point in
common iff they are both contained in some plane. Therefore the

;’ adjacency graph of (L,C¢) is identical to the line graph of (P,L) .

Let H be the adjacency graph of (L,C) .

Lemma 10, If m and n are distinct lines then d.H(m,n) = dG(m,n) +1.

If the line m is not contained in the plane C then d.H(m,C) = dG(m,E) +1.

| Proof: Let dG(m,n) = i-1 where m# n . Denote m by m,
and n by m; . Let (mo,xl,ml,xz,...,xi,mi) be a sequence of points
and lines such that X is contained in my and m, L<j<i).
Let cJ. = C(mj_l,m(j) for 13 <4, Than (mo,cl,ml,ce,...,ci,mi)
. is a sequence of lines and planes so that C 3 contains m 5l and m 3
(1<j<i), so dH(m,n) <1i . Since the direction of this argument
is reversible, we may conclude that d.H(m,n) = dG(m,n) * 1 e

let m € C . Now dG(m,E) = min{dG(m,n) :n€c} and
dyy(m,C) = min[du(m,n) :n€c). since dy(m,n) = 4,(m,n) + 1 for
distinet lines m and n , d.H(m,C) = dG(m,'é) +1.

TS =t

P T ki i S
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Lemma 11, (L,C) is an (s+1,q,d)-pseudo projective incidence
structure.

Proof: We have already established that (L,C) is a semilinear
(r*,k*)-incidence structure where r* = (r-1)/q = (qd's-l)/(q-l)
and k* = g+l = (¢®"1-1)/(q-1) . (If q=1 then r*=(r-1)/q =
d-s and x* = gk+l = s+l.) The graph H is connected since G is,
We prove (f4). Let m and n be lines and dH(m,n) =2 (so dG(m,n) = 1).

Let S

{C:CEC,nEc,dH(m,C)=1}. We are to show |s| =q+ 1.

Now S

{cccec,nec,nnNT#dA .

If h is a line and 2 & vertex so that dG(z,h) = 1 then
there exists at least two lines hl and h2 so that z € hi and
h, intersects h (i = 1,2) » The plane c(hl’h2) contains both h

i
and z . For any plane C containing both z and h we have
In; N Tl >2 so hy €c¢c (i=1,2), and consequently C = C(hl,hz) .
Therefore ©or any line h and vertex 2z so that dG(z,h) =1, a
unique plane contains both z and h .
Lines m and n do not intersect. So, no plane contains both.
Every plane S contains n and at least one point of m . Let

X, 9%y seee,X, Dbe the points of m satisfying dG(xi,n) =1 (0<1<q).

q

Let C, be the unique plane containing x; and n (0<i<q). If

i
for some i and j (i # j) cigc.j then |m ﬁUil_zZ. By Lemma
9 this would imply that m € Ci , which is false. Then S = {Co,Cl,...,Cq] )
so |s|l=q+1.

To prove (f3), let dH(m,C) =1 . Then dG(m,c) =0. So,
nNCT#¢. Bylema 9, |mNCTl=1. Let {x}=mNT.

We are to show that d.H(m,n) =1 for exactly q +1 lines n of
C. In other words dG(m,n) =0 for exactly q+ 1 lines mn of C.

But this is clear, since exactly q + 1 lines of C contain x .
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Lemma 12. Pasch's axiom is valid in (C,L,3) .

Proof: We first state Pasch's axiom for (¢,L,3) , recalling
that two lines intersect (i.e. contain a vertex in commom) iff
they are both incident with some plane. Pasch's axiom for (C,L,3)
states that if lines m and n intersect, and lines hl and h2
intersect both m and n but no plane contains hl’ m, and n and
no plane contains h2 ,my and n, then h.l and h2 intersect.

Let {x}=mNn. Now hy ¢ c(m,n) , so hy ¢ T(m,n) .
Since hlﬂT(m,n) but h, intersects both m and n, x€h .
Similarly x € hy « Therefore h, and h, intersect, and Pasch's

axiom is valid.

Let P={P:p€P) where P={p:p€L,p€m .

Lemma 13, The mapping @ : P + P defined by a(p) =P
is a bijection.

Proof': The mapping Q 1is clearly surjective. We show that
a is injective. (P,L) is a semilinear (r,k)-incidence structure,
therefore x| =r>1 and |x N7y <1 for all x,y € Ps It
follows that X # y for all distinet x,y € P .

Lemma 14, PU C is a partition of the set of maximal cliques

of I«

Proof: It is clear from Lemma 7 that every maximal clique
of lines is contained in P U C . We have shown that every plane
is a maximal clique of lines. Therefore it is sufficient to show
that X is a maximal clique of lines for every x € P, and that

X and C are disjoint. X and C are disjoint because the lines

of a plane are not concurrent.

e \hi Teen, i N
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let x € P, Clearly x is a clique of lines. Let K be
<imal clique containing x . If possible, let X ; %« Let

K -%X o Then x £m . By (f3), the number of lines of x

intersecting m is at most q + 1 . Since K is a clique of

lines, every line of X intersects m . Therefore q + 1> [x| =

q + 1 which ‘¢ a contradiction.

In Tlemmas 17 - 17 we examine (s,q,d)-pseudo projective incidence
structures where ¢ =d - 1 .

Lerma 15,  Let (P,L) be a (d-1,q,d)-pseudo projective incidence

structure. Then a2ny two lines intersect and if q = 1, ‘L‘ = d.

Proof : (r,.) is an (r,k)-incidence structure where r = q + 1
and k= (o 1)/g - 1) fif gq=1 then k=4 = 1),

Let G be the adjacency graph of (P,L). Since G is connected,
the distance between any two lines is finite. If not all lines intersect

then there are lines m and n so that d(myn) = 1 . Assume that

d(m,n) = 1 . Then for some x € m,d(x,n) =1 . By (f3) q+1
lines rontain = and intersect n . Then these lines together with
consttute o + 2 lines containing x , which violates the condition

r=q+ 1, Thercfore any two lines intersect.

et m € L . 3ince k(r-1) 1lines intersect m and all lines

intersect, |L] = v(r-1) +1., If g=1, k=4d-1 and |L|=4d.

Lz 10, let  (P,L) be a (d-1,q,4)-pseudo projective incidence
structure where d >3 and q>2 , and let the incidence structure
wal 5 (P,1) catisiy Pasch's axiom. Then
(1) q ‘¢ a prime power and d is an integer,

(ii) t!e incidence structure dual to (P,L) is a (2,q,d)-




yrojective incidence structure,

and (i:1) (»,1L) is a (a-1,q,d)-projective incidence structure.

Proof: For r=q+ 1 and some kx , (P,L) is an (r,k)-incidence

structure.

We show that (1,P,d) satisfies the axioms (pl) - (p&) of
section 1. Now elements of L will be called points and elements of
P will be called lines. By Lemma 15 any two points are incident
with some line. Therefore (L,P,3) satisfies (pl). By hypothesis
(p3) is satisfied. Every element of P 1is incident with q + 1 > 3
elements of L . Since d > 3 every element of L is incident
with mores than q + 1 elements of P . Tt easily follows that rank
of (P,L) is at least & . Therefore by the theorem about finite
projective spaces (L,P,€) is a (2,q9',d')-projective incidence
structure. Clearly we must have q' = q and d' = d . This establishes
(ii) and (i). Since a (d4-1,q,d)-projective incidence structure is

dual to a (2,q,d)-projective incidence structure (iii) follows.

Lerma 17. Let (P,L) be a /d-1,1,d)-pseudo projective incidence
cstructure where 4 >2 ., Then d is an integer and (P,L) is a
(4-1,1,d)-projective incidence structure.
Proof: (F,L) is an (r,k)-incidence structure with r =2
g | and « = d-1 , Since k is an integer, d is an integer. We examine
the dual incidence stucture (L,P,€). Elements of L will be called
Y dual points and elements of P dual lines. Each dual line is incident
with exactly 2 dual points. Therefore dual lines are equivalent to
the edges of the adjacency graph of (L,P,€). By Lemma 15, each pair

of dual points iz incident with some dual line.

- T




o, the od acency graph of (L,P,€) is the complete graph on

fLl = @ vertices. Let Y bea d - set and Z, be the set of
iesibsets of Y, 1 < i <d-1. We have proved that (L,P,€) is
isomornhic to  (Y,2,) « Therefore (P,L) is isomorphic to
(IL:,Y,F.) and hence to (Z<1-2’Zd-l’ £)s

Lemma 10, There is no (s,q,d)-pseudo projective incidence

structure where 3 < s and d-2 <sg <d-l .

Proof: Asswe x = (P,L) is an (s,q,d)-pseudo projective
incidence structure vhere 3 <s and d-2<s<d-1., If q=1
then r(x) = d-s+1 is not an integer. Therefore .q > 1 . Define
C as in Lemmas G - 11. Dy Lemma 11 x* = (L,¢) is an (s+l,q,d)-
nceudo projective incidence strucutre. r(n¥*) = (qd's-l)/(q-l) 50
1 < r(*) <qg+l . Since r(x*) >2 and k(n*) > 2 there exist
m €L and C € C so that in the adjacency graph of n«* d(m,C) = 1.

By (£3), r(m) > g+l . Since r(m) = r(x*) the impossibility of

(A%

the assumed incidence structure is established.
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3. Proof of the Theorems.

The heart of the inductive procedure for Theorem 1 is contained

in the next lemma.

lemma 19. For Jj =1, 2 1let

(1) B, bve a set,

J

(i1) Aj and CJ be sets of subsets of BJ,

(iii) the incidence structures (B,, Ad) and (B;]’ CJ)
have the same adjacency graph H,,
(iv) A‘1 U CJ

be the set of maximal cliques of H; ’
Let (Bl’ Cl) and (BQ, Ce) be isomorphic. Then (Al’ B, 3) and

(A2, B,y 3) are isamorphic.

Proof. By hypothesis (Bl, Cl) and (B,, Cz) are isomorphic; let

o B, +H and T: C

1 * B 3

o be bijections which preserve incidence.
For any B' < B, we let o(B') = {o(b): b € B'}; in particular, for
c €Cy o(c) = {o(d); b €Ec}. Then o(c) = T(¢c) for all c € Cye

o 1is an isomorphism between the adjacency graph H, of (Bl’ cl)
and the adjacency graph H, of (32, 02). Therefore ¢ induces a

bijection between the maximal cliques of Hl and the maximal cliques

of HQ. The set of maximal cliques of H1 is Alucl and the set of

19
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maximal cliques of H, is A, U C,. Since A1 n Cy = ¢ - A, n C,

and o induces a bijection from C, to 02, ¢ 1induces a bijection

1

from A, to A

1 o Then the bijection ¢: B, > B

1 s and the bijection

from A1 to A2 induced by ¢ show that the incidence structures
(Bl’ Al) and (Bg, A2) are isomorphic, and also that (Al’ B,, 3) and

(A,, B,, J) are isomorphic.

of —2
In order to shorten the proof of Theorem 1, we introduce some

terminology. For q = 1 and a positive integer 4, Vd 3 will denote
’

a finite d-element set. For q a prime power Vd will denote a d-dimensional

sQ

vectorspace over GF(q). For q =1 an i dimensional object of

\}

d,q will mean an i-element subset of vd,q’ For q a prime power,
b

an i-dimensional object of Vd,q will mean an i-dimensional subspace of

For 0<i<d, W

4 will denote the set of i-dimensional objects

vd,qc

Proof of Theorem 1. Assume that there exists a counter example

to the statement of Theorem 1. Among all such counter examples we
choose an incidence structure = = (P, L, I) for which r(rx) is as small
as possidble. ylog we assume that lines are subsets of points. We
write s for s(r) and 4 for d(nx). Let C be as in Section 2. By
Lerma 11, n = (L, @) is an (s + 1, q, d) - pseudo projective inci-
dence structure. Note that r(n ) < r(x) and that the dual of x
satisfies Pasch's axiom by Lemma 12. By Lemma 18, s <d - 2. If

8<d-2, then T satisfies
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the hypotheses of the theorem and r(n*) < r(n). Therefore x As

an (s + 1, q, 4) - projective incidence structure. If 8 =d.- 2, then
by lemmas 16 and 17 Pl an (d - 1, q, d) - projective incidence
structure. So in either case d 1is an integer, q =1 or is a

prime power and ¥ is isomorphic to (ws, LR ) where W, is

the class of i dimensional objects of a V where i =8, 8 + 1.

d,q
o = . < W =
For w € Wei1? let w = {u: u€ W and u S w) and le (w: wE€ ws+1)°
For w € We 12 let w' = {u: u € We, u2 w} and w;_l = (w': w€ wa-l}'

It is easily seen that (Ws, W €) is isamorphic to (Ws, W..) and

s+l’ 8+l

(W <) 1is isamorphic to (ws-l’ w;, 3). We now apply lLemma 19

s-1’ ws’

5 = of — W A A2 - P
with Bl WB, Cl-w&land Al— a3 B2—L, Ce—c and A2—P.

- ¢ -
(ws, wﬁl)md (ws’ w;_l) have the same adjacency graph H . w._l U Wy

is a partition of the set of maximal cliques of Hl By the remark

after Lemma 9, (L, ¢) and (L, P) have the same adjacency graph H,.
By lemma 14, P U C 1is a partition of the set of maximal cliques of H,.
Finally (L, ¢) end (ws 3 Wa+l) are isomorphic. Therefore

by Lemma 19 (P, L, 3) and (W ,, W, 3) are

isomorphic and hence (P, L, I) and (w._l, L S) are isomorphic.
Hence there is no counter example to the statement of Theorem 1.

Proof of Theorem 2. Wlog assume that lines of n are subsets

of points. Consider the connected components of G(n). Let P, be
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the vertex set of the ith component, 1 <i <t. Let L; Dbe the set

of lines of n which contain at least one point of P

s leieh,

Then P=P1UP2 el Pt and L:L1UL2 UeosU Lt are partitions

and each line of L, 1s a subset of Py 1<1<t. Tt is easily

checked that for 1<i<t, (Pi’ Li) satisfy the axioms (f1) - (£5) 1

with respect to the integer q. Therefore for some integers 8y and d1

(Pi’ Li) is an (si,q, di )= projective incidence structure and = is
the direct sum of these incidence structure. The converse follows from

Lemma 2.




L, Minimality of the Axioms.

Let P be the class of (8, q, d) - projective incidence structure
with 3 <s <d - 2. The axioms (f1l) - (f5) form a minimal set of
axioms for the purpose of characterization of the class . We now
demonstrate the minimality of the axiom set (f1) - (£5). For
J€(1, 2,3, 4, 5) we choose q and construct an incidence structure
n' which satisfiesthe four axioms other than (fj) and is not a
member of . For j =5, we saw that the direct sum of two
(s, q, d) - projective incidence structures (3 <s<d -2 satisfy
the four axioms other than (f5). For j = 1, our example is a nondesarguesian
finite projective plane n of order q. It is easy to see that =
satisfies the axioms (f2) - (f5) and that s(x) = 2. Since = 1is
non desarguesian, 7 is not an (s, q, d) - projective incidence
structure. For j = 2, we construct an example as follows. Let q be
a given prime power. We choose positive integers s and d satisfying

' -
3<8<d-2 and (2q+1)2+ (2q+1)+1 < mn(‘lq:i 3 (g — -l)) 5

Let n be an (s, q, d) - projective incidence structure. The point
set of the incidence structure x' will be same as that of nx and for

each line £ of =, n' will have two lines ¢ and ¢' with P,6K = P

L L'’
8 d-s+1
It is easily checked k(rn') = 9;% and r(n') = QQT-T;];) . Therefore

with respect to (2g9+1), 3 < s8(x') <d( n') =2 and also n' satisfies
(£3), (£4) and (£f5) w.r.t. 2q+l. Clearly =' isnot a member of § and is
not an (s, q, d) - projective incidence structure. For J = 3, we

proceed to construct an example as follows. Consider an affine space

23
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n-2
Aff(n, q) where q 1is a prime power, and q2 +q+ 1< g-a:il . let

n' be an incidence structure whose points are the planes of the affine
space and lines are the 3-spaces of the affine space and incidence is

containment. Points and lines of x will be respectively called ideal
points and ideal lines. It will be helpful to view the affine space as

a projective space PG(n, q) minus a hyperplane Y. The number of

planes contained in an affine 3-space is q3 + q2 + q. Therefore
= n-2_
k() q3 +q +q and r(n) = g—a:il . For an ideal point p and an

ideal line £, p' and £' will respectively denote the corresponding
projective plane and projective 3-space. The axiom (fl) is satisfied

by n'. Clearly (f2) and (f5) hold for n'. ILet Py and p, Dbe
two ideal points such that d(pl, pe) = 2. Then Py and p, are affine
planes (Figure 1). Since d(pl, p2):=2, there exist an ideal point Py
such that d(pi, p3) -1, 1 = 1, 2. Hence (pi, pé) is a 3-space for
i =1, 2. Therefore pi n pé is a line for i = 1, 2. Therefore

pi n pé is a point 0. Let £ be an ideal line such that Py is
incident with ¢ and d(pg, £) = 1. Then £' is a projective 3-space
such that pi < £2' and pé N L' 1is a projective line passing through

0. Let xi(i -0, 1,...,9) be the projective lines of p, passing
through 0. Then letting zi = (pi, xo), 0<i<aq 4 0<i<aq

are all the projective 3-spaces satisfying pi <2, pé N £' = a projective
line. The corresponding affine 3-gpaces zi, 0<1i<q are all the ideal
lines satisfying d(pl, L) = 0 and d(pa, £) = 1. We proved that '

satisfies (f4t) w.r.t. q.
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n-2
q -1

q~l . I.et

Aff(n, q) where q 1is a prime power, and q2 +q+1<

n' be an incidence structure whose points are the planes of the affine
space and lines are the 3-spaces of the affine space and incidence is

containment. Points and lines of n will be respectively called ideal
points and ideal lines. It will be helpful to view the affine space as

a projective space PG(n, q) minus a hyperplane Y. The number of

planes contained in an affine 3-space is q3 + qe + q. Therefore
n-2
k(x) - 43 &5 q2 +q and r(x) = g—a:i£ . For an ideal point p and an

ideal line £, p' and £' will respectively denote the corresponding
projective plane and projective 3-space. The axiom (f1) is satisfied

by n'. Clearly (f2) and (f5) hold for nx'. Let Py and p, Dbe
two ideal points such that d(pl, p2) = 2. Then P and P, are affine
planes (Figure 1). Since d(pl, p2) =2, there exist an ideal point Py
such that d(pi, p3) =1, 1 =1, 2. Hence (pi, pé) is a 3-space for

i = 1, 2. Therefore pi n pé is a line for i = 1, 2. Therefore

pi n pé is a point 0. Let £ be an ideal line such that 12 is
incident with ¢ and d(pz, 2) = 1. Then ¢£' 1is a projective 3-space
such that pi < 4' and pé N £' is a projective line passing through

0. let xi(i - 0, 1,...,9) be the projective lines of p, passing
through 0. Then letting £; - (pi, xo), 0<1i<q, zi 0<i<q

are all the projective 3-spaces satisfying pi <2, pé N £' = a projective
line. The corresponding affine 3-spaces Li’ 0<i<q are all the ideal
lines satisfying d(pl, £) = 0 and d(p2, £) = 1. We proved that «'

satisfies (f4) w.r.t. q.
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We now show that (f2) Joes not hold in x'. Let £ be an ideal

line and p be an iZ._. point such that d(p, #) = 1. Let p' and £'

be the corresponding projective plane and 3-space respectively. Simce

d(p, £) =1, p' N £' must be a projective line. Case 1l.(Figure 2) p' N &' =y
is a projective line contained in Y. There are (q + 1) planes of £'

which contain y. Of these one is £' Ny which does not correspond

to an ideal point of x. Therefore in case 1 there are q ideal points

p; such that p, 1is incident with £ and d(p, pi) =1, 1<1<q.

Case 2.(Figure 3) p' N £ =y is a projective line not contained in I . In this

case there will be (q + 1) ideal points Py such that Py is incident

with ¢ and d(p, pi) =1 0<1i<q. With respect to q, n' satisfies

A

/
F
\

= \

all the four axioms except (f3) and «x' £PQ .

A /p' ,p'n v l"

Figure 2 Figure 3
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We now consider J - 4. Let q be a prime power, n >4, PG(n, q)

be an n-dimensional projective space over GF(q) and En_3 be an

(n-3)-flat of PG(n, q). Let n' De an incidence structure whose points

are the lines of PG(n, q) not intersecting Zn_ and lines are the

3

planes of PG(n, q) not intersecting En- As before points and lines

3"
of n will be referred to as ideal points and ideal lines respectively.
Lines and planes of FPG(n, q) will be called projective lines and pro-
Jective planes. Clearly every ideal line is incident with q2 +q+1

ideal point and hence k(n) = q2 + q + 1. The number of projective

n-1
planes of PG(n, q) containing a given projective line is 9-;]'_—1 .
n-2
Of these projective planes gT_i—l will intersect Zn_3. Hence the

number of ideal lines passing through a given ideal point is qn-2.

Since n >4, the axiom (f1) holds for =x' with respect to (q - 1).
Clearly (f2) and (f5) held for n'. We now check (f3) for

n. lLet p and £ respectively bean ideal point and an ideal line such

that d(p, £) - 1. Then the projective line p intersects the projective

plane £ 1in a projective point O(Figurel ). Let Tl (p, Zn_3) be the span

of p and Zn_3 and Py = LN xn-l' There are q + 1 projective

lines of £ passing through 0. ILet Pg? Pys cees pq be these lines.

The projective plane (p, po) is contained in r‘n-l’ intersects Zn_

3
and hence is not an ideal line of n. Therefore the distance between

the ideal points p and Py is greater than 1. The ideal points
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P;» p?,...,pq are the only ideal points p satisfying Py C ¢ and

d(p, pi) =1, 1<1<q. Therefore n satisfies (f3) with respect

tO (q s l) . m

PN K=

i

e 5

Po .
i

»
zn-l
zn'3 /
Figure kI ORI

We now show that (f4) does not hold in =n' . Let

P, be an ideal point and <En-3’p1) = %

N1’ Let Py be an ideal

i- point such that d(pl, p2) = 2. Case 1. Py is a projective line not
intersecting p, and Zn-3 and not contained in NRY (Figure 5). Let x; ,0<i<g
be the q + 1 points of p, where x) €T ., and £, = (pl, xi),

0 <1 <q. The projective plane zo intersects Zn_3. In this case

Ll,... ,zq are the only ideal lines which contain pl and have distance

one from Pye
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Case 2. The projective line Py intersects Py and is contained in
Fn-l (Figure6 ). The projective plane (pl, p2) intersects 2n-3 and hence is
not an ideal line. Therefore d(pl, p2) = 2. let £, be any

projective plane which contains Py

Figure 6

and is not contained in T . Then it is easily seen that Py S22

nel and

1
d(pe’ 11) = 1. In case 2 the number of ideal lines { satisfying 2 <2,

d(pg, L) =1 1is qn-2. Therefore (f4) does not hold in n with respect

to (q -1). Obviously n' isnota (s, q - 1, d) - projective incidence
structure for any choice of s and d.

This campletes the proof of the minimality of the system of axioms
(£1) - (£5).

\\
o

Concluding Remarks. ' Consider a simple graph whose vertices are s-dimensional

subspaces of a d-dimensional vector space V over GF(q). Two vertices
in this graph are adjacent iff the corresponding s-dimensional subspaces

intersect in an (s-1l)~dimensional subspace. This graph will be called . u/f _
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an (s, q, d)-projective graph. The Theorem 1 of this paper can be used
to obtain a characterization of the (s, q, d)-projective graphs provided
d 1is larger than some function of 8 and q. We are also considering -«
characterization problems of Affine spaces and Polar apal.ceslv infterms 'of v
flats of higher dimensions. These results will be communicated in a

\
\

subsequent communication.
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